Image super-resolution via feature-augmented random forest
نویسندگان
چکیده
منابع مشابه
Image Super-resolution via Feature-augmented Random Forest
Recent random-forest (RF)-based image super-resolution approaches inherit some properties from dictionary-learning-based algorithms, but the effectiveness of the properties in RF is overlooked in the literature. In this paper, we present a novel feature-augmented random forest (FARF) for image super-resolution, where the conventional gradient-based features are augmented with gradient magnitude...
متن کاملOptimized Regressor Forest for Image Super-Resolution
The goal of image super-resolution is to recover missing high frequency details of an image given single or multiple low-resolution images. It is a well-known ill-posed problem and requires mature prior knowledges or enough examples to restore high-quality high-resolution images. Recently, many methods formulate image super-resolution as a regression problem. Input image patches are classified ...
متن کاملImproving Super-resolution Techniques via Employing Blurriness Information of the Image
Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...
متن کاملSingle Image Super Resolution via Manifold Approximation
Image super-resolution remains an important research topic to overcome the limitations of physical acquisition systems, and to support the development of high resolution displays. Previous example-based super-resolution approaches mainly focus on analyzing the co-occurrence properties of lowresolution and high-resolution patches. Recently, we proposed a novel single image super-resolution appro...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing: Image Communication
سال: 2019
ISSN: 0923-5965
DOI: 10.1016/j.image.2018.12.001